Introduction

Osteoporosis is a silent disease with high medical, economic and social costs. Osteoporotic fractures are a particularly serious complication of the disease. Seventy percent of fractures in people over 45 years are due to osteoporosis [1]. Hip fractures are one of the most serious consequences of this disease, with high health and social costs. Only 50% of patients recover prior levels of functioning, and hip fractures are associated with a 12-35% mortality rate. Hip fractures account for 14% of all osteoporotic fractures, and the cost of hip fractures comprise about 60% of the total cost of care [1-3]. Wrist fractures comprise 19% of all fractures associated with osteoporosis, result in functional consequences in a third of patients, and represent 6% of the total treatment costs of all fractures. In fact, wrist fractures are considered to be a “sentinel fracture” of other osteoporotic fractures, preceding those fractures by several years [1-5].

Measures of blood and urine markers of bone resorption are correlated with the amount of degraded type I collagen (CTX-I) (β-Crosslaps), which constitutes 90% of bone proteins. This marker detects the β-isomer form of type I collagen carboxy-terminal telopeptide from bone in osteoporotic hip and wrist fractures. At present, measurement of these markers is considered to be a valid clinical method for determining the balance between bone formation and resorption, and for monitoring the response of patients to antiresorptive treatment [6-8].

Our aim was to study the serum CTX-I (β-Crosslaps) bone resorption marker in men older than 65 years and postmenopausal women from Spain for to know cut-off levels of CTX in this osteoporotic fractures and to define osteoporotic patients with higher risk of fracture and consecutively monitoring treatment of them.

Material and Methods

Our sample included 82 patients with hip fractures and 27 patients with distal radius fractures that occurred between 2010 and 2012. This study was approved by our Ethic Committee and has
therefore been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and all persons gave their informed consent prior to the study. The mean age for hip fractures was 83.3 years with a range of 65-94 years (SD: 5.7). Of these fractures, 58 (70.7%) were trochanteric fractures and 24 (29.3%) were cervical fractures. Of these subjects, 14 (17.1%) were men and 68 (82.9%) were women. The fractures were right-sided in 29 (35.5%) cases and left-sided in 53 (64.5%) cases. All wrist fractures were comminuted and involved the joint. The mean age of patients with a wrist fracture was 74.1 years, with a range of 54-90 years (SD: 8.6). Of these cases 7 (25.9%) were men and 20 (74.1%) were women. Right-sided fractures were seen in 12 (44.4%) cases, and left-sided fractures were seen in 14 (55.6%) cases. For each of the subjects a measurement of the serum concentration of the 8 amino acid β-isomer Crosslaps of the C-terminal portion of type I collagen or carboxy-terminal telopeptide (CTX-I) was obtained. The analytical test consists of an immunological test in vitro (electrochemiluminescence immunoassay) (Elecsys β-Crosslaps®, Roche Diagnostics, Manheim, Germany) to quantify the degradation. Results are given in nanograms/milliliter (ng/ml). According to the literature, and our experiments, CTX-I levels are highest in the morning and lowest in the afternoon and at night, more specific for bone than for soft tissues. It seems that its levels are quadruple by 2020 and that approximately 20- 30% of patients with osteoporosis will have a hip fracture before the age of 65 years. It has been estimated that the number of hip fractures will therefore have increased by 50% by 2020 and that approximately 20- 30% of patients with osteoporosis will have a hip fracture before the age of 65 years. It has been estimated that the number of hip fractures will quadrupled by 2020 and that approximately 20- 30% of patients with hip fractures will die within three months of the injury [1,2,16,17]. Radius fractures are the second most common fracture caused by osteoporosis [18].

Table 1: CTX-I serum levels in hip and distal radius fractures in total cases, gender and side.

<table>
<thead>
<tr>
<th>Group</th>
<th>CTX-I levels in hip fractures (Mean ± SD') (Range) (95% CI **)</th>
<th>CTX-I levels in distal radius fractures (Mean ± SD) (Range) (95% CI **)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total cases</td>
<td>0.74 ng/ml ± 0.39* (range: 0.2-2.68 ng/ml)</td>
<td>0.64 ng/ml ± 0.28* (range: 0.17-1.16 ng/ml)</td>
</tr>
<tr>
<td>Male</td>
<td>0.67 ng/ml ± 0.26* (** 0.52-0.82)</td>
<td>0.64 ng/ml ± 0.22* (** 0.43-0.84)</td>
</tr>
<tr>
<td>Female</td>
<td>0.75 ng/ml ± 0.41* (** 0.65-0.85)</td>
<td>0.64 ng/ml ± 0.29* (** 0.49-0.78)</td>
</tr>
<tr>
<td>Right-sided</td>
<td>0.78 ng/ml ± 0.44* (** 0.08-2.57)</td>
<td>0.59 ng/ml ± 0.28* (** 0.41-0.76)</td>
</tr>
<tr>
<td>Left-sided</td>
<td>0.69 ng/ml ± 0.31* (** -0.08-2.57)</td>
<td>0.75 ng/ml ± 0.23* (** 0.60-0.90)</td>
</tr>
</tbody>
</table>

'Standard Deviation
'95% Confidence Interval

Statistical analysis: Descriptive statistics, Kolmogorov-Smirnov test was applied to confirm a normal distribution. Parametric tests (Student’s t-test), linear regression, and multiple linear regression were used to compare quantitative paired values and explore a possible relationship between age, sex, and CTX-I serum levels. A prior study of sample size was conducted using α = 0.05 and β = 0.10 (type I and II errors). The level of statistical significance was set at p <0.05.

Results

The calculated sample size required at least 13 subjects in each group. Descriptive statistics for each group are summarized in Tables 1 and 2. Of the patients with hip fractures, 38.3% had a CTX-I serum level below 0.60 ng/ml and 61.7% had levels above normal. In total, 63% of women and all men exceeded levels of 0.60 ng/ml and 0.30 ng/ml, respectively. Of the patients with radius fractures, 46.2% had a CTX-I level lower than 0.60 ng/ml and 53.8% had high levels. A total of 65.4% of women and all men exceeded the respective normal cutoffs. There was no difference in CTX-I levels between trochanteric and cervical fractures (p = 0.06), between men and women (p = 0.36), or between sides (p = 0.39) for both hip fracture (p = 0.98) and wrist fracture (p = 0.13). CTX-I levels were significantly higher in patients with hip fractures than in patients with wrist fractures (p <0.001). Age did not influence CTX-I levels in patients with hip (r = 0.18, p = 0.11) or wrist (r = 0.09, p = .64) fractures. There was no difference in CTX-I levels according to age, sex, or fractures side.

Discussion

The relevance of bone fragility caused by osteoporosis is clearly evident. It has been estimated that the number of hip fractures will quadrupled by 2020 and that approximately 20- 30% of patients with hip fractures will die within three months of the injury [1,2,16,17]. Radius fractures are the second most common fracture caused by bone fragility [18].

CTX-I is a measure of the β-isomer of type I collagen and is more specific for bone than for soft tissues. It seems that its levels are highest in the morning and lowest in the afternoon and at night, with variations of 5-10%. The most representative results are obtained between 7:30 and 9:30 in the morning. Therefore, we collected samples at this time to measure the maximum values of CTX-I [7-9,13,19,20]. We chose the Elecsys β-CrossLaps® method because of its sensitivity. This method’s correlation with bone formation markers has been observed, allowing one to determine the degree of degradation of the C-terminal telopeptide of type I collagen (β-Crosslap) from bone, with intra- and inter assay variability from 1.2-5%, respectively. This method can detect differences of 9-10% in the same individual with a sensitivity of 0.1 ng/ml, provided that the

immunoreactivity methodology, extraction time slot and fasting state of the patient are replicated [7-10,15,17,21,22]. Moreover, we elected to study the serum levels rather than the urine CTX-I levels, thus eliminating the confounding factor of impaired renal function and abnormal creatinine excretion. Abnormal creatinine values result in a 10-45% variability in CTX-I values [7,9,10,15,17,20]. Another factor that may distort the reliability of CTX-I is age. Age does not seem to significantly influence serum CTX-TELOC or Bone Mineral Density (BMD) in premenopausal women, but age has a significant influence on BMD in postmenopausal women [7,8,12,15,17,20]. In contrast, a significant negative correlation has been found between CTX-I levels and BMD at the distal radius in studies with 4 years of follow-up [17]. Additionally, large differences between sexes, races, and geographic areas have been described, suggesting that the risk factors for osteoporosis and fractures are multifactorial. The incidence of hip fractures is three times higher in females and up to seven times higher in some countries than in others. In general, the number of fractures is greater in northern Europe and lower in the Mediterranean region [23]. There are significant differences between people from different countries in terms of the levels of bone markers such as CTX-I. In fact, the levels of these markers are three to five times higher in the United States, Canada, and France than in Germany or the UK, and these levels are very low in Spain [12,22]. Toxins, such as tobacco, appear to affect levels of these markers. Female smokers have CTX-I levels that are 8% higher than non-smokers. On the contrary, these differences are not seen with alcohol consumption [12]. Other markers of bone resorption, such as pyridoline and deoxypyridinoline exist but these markers are not exclusively derived from bone, as is the case with CTX-I. Therefore, these markers have not been studied as extensively [10,13]. However, it has been shown that high CTX-I and deoxypyridinoline levels, combined with low BMD or even normal BMD, accurately predict risk for hip fracture. This risk doubles with a one standard deviation drop in BMD [12,13,20,24]. It has been reported that CTX-I has a sensitivity of 82% and a specificity of 100% in predicting increases in BMD after antiresorptive treatment and is more reliable than markers of bone formation [10,24]. Dual X-Ray Absorptiometry (DXA) and Quantitative Computed Tomography (QCT) are diagnostic methods that determine BMD and bone microarchitecture within an accuracy of 0.6-1.2%, allowing for prediction of risk of hip fracture with decreases in BMD [10,17,20]. However, these studies are costly, especially if used to track BMD and monitor the effect of different antiresorptive drugs [10-12]. In contrast, serum CTX-I is a valid clinical method for measuring the extent of bone resorption, ruling out metabolic pathologies, assessing risk for fractures and monitoring the effects of antiresorptive treatments in clinical practice. It has been reported that a 50% reduction in serum CTX-I would indicate that an antiresorptive therapy is effective in preventing fractures [8,12,17,23]. Moreover, a significant inverse correlation between BMD and serum CTX-I has been found. Thus, BMD increases of 3% at the lumbar spine are associated with 48% decreases in serum CTX-I after 6 months of estrogen therapy in postmenopausal osteoporotic women [8,10]. Moreover, the availability of CTX-I testing allows providers to test for compliance to antiresorptive treatments, detecting the almost immediate response of osteformation markers to treatment with parathormones. Additionally, 2 to 3 months later there is a delayed response of bone resorption markers such as CTX-I with decreases in 54% of postmenopausal women treated with estrogens or parathyroid hormone [8,11,15,20,21,25]. Some authors advise combining CTX-I and bone densitometry, claiming that this method doubles the capacity to predict hip fracture in osteoporotic patients [7,15,17,21]. It has been found that 33 - 42% of postmenopausal women with osteoporosis exceeded the mean ± 2 SD of CTX-I levels, exhibiting elevated bone resorption and remodeling levels [12,15,17,20,26]. We have obtained CTX-I levels that exceed the normal value in 63% and 65% of women with hip and radius fractures, respectively, and in all men with fractures. That is, we found high CTX-I levels in a significantly higher percentage of people with hip or radius fracture, than in postmenopausal women without fracture. We have also found that all men with both types of fracture had higher than normal CTX-I levels. This finding is consistent with earlier studies of men with osteoporosis, but, again, it has not been reported in men with hip or radius fractures [15,27,28]. These findings are consistent with recent DXA and QCT studies that have found a lower BMD and trabecular thickness in a population of premenopausal women with hip and distal radius fractures [29]. Therefore, we believe that this preliminary study shows these original results. There are obvious limitations. A larger sample is needed to differentiate the importance of sex and to confirm whether there are statistically significant variations in CTX-I levels in different types of hip fracture. It is also clear that the use of a single bone marker for a problem as complex as osteoporosis is not reasonable. However, this reasonably economical and accurate clinical tool could, through periodic screening, identify population cut-offs for both sexes for risk of osteoporotic fractures. Finally, a larger sample size could help determine CTX-I cut-offs for Spanish adults with hip or distal radius fractures.

Ethical Approval

1. All patients gave the informed consent prior being included into the study;
2. All procedures involving human participants were in accordance with the 1964 Helsinki declaration and its later amendments;
3. The study was approved by the Research Ethics Committee (or Institutional Review Board).

References

