Clinical Image

Fluorescence Spectroscopy, Phosphorescence Spectroscopy and Luminescence Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation with the Passage of Time

Alireza Heidari*
Faculty of Chemistry, California South University, USA

Clinical image

In the current study, we have experimentally and comparatively investigated and compared malignant human cancer cells and tissues before and after irradiating of synchrotron radiation using fluorescence spectroscopy, phosphorescence spectroscopy and luminescence spectroscopy. It is clear that malignant human cancer cells and tissues have gradually transformed to benign human cancer cells and tissues under synchrotron radiation with the passage of time (Figures 1–3) [1–119].

It can be concluded that malignant human cancer cells and tissues have gradually transformed to benign human cancer cells and tissues under synchrotron radiation with the passage of time.
Figure 2: Phosphorescence spectroscopy analysis of malignant human cancer cells and tissues (a) before and (b) after irradiating of synchrotron radiation in transformation process to benign human cancer cells and tissues with the passage of time [1-119].

Figure 3: Luminescence spectroscopy analysis of malignant human cancer cells and tissues (a) before and (b) after irradiating of synchrotron radiation in transformation process to benign human cancer cells and tissues with the passage of time [1-119].

References

18. Heidari A. Measurement the Amount of Vitamin D2 (Ergocalciferol), Vitamin D3 (Cholecalciferol) and Absorbable Calcium (Ca2+), Iron (II)(Fe2+), Magnesium (Mg2+), Phosphate (PO4–) and Zinc (Zn2+) in Apricot Using High–Performance Liquid Chromatography (HPLC) and Spectroscopic Techniques. J Biom Biostat. 2016; 7: 292.

19. Heidari A. Spectroscopy and Quantum Mechanics of the Helium Dimer (He2+), Neon Dimer (Ne2+), Argon Dimer (Ar2+), Krypton Dimer (Kr2+), Xenon Dimer (Xe2+), Radon Dimer (Rn2+) and Ununoctium Dimer (Uuo2+) Molecular Cations. Chem Sci J. 2016; 7: 112.


27. Heidari A. Discriminate between Antibacterial and Non-Antibacterial Drugs Artificial Neural Networks of a Multilayer Perceptron (MLP) Type Using a Set of Topological Descriptors. J Heavy Met Toxicity Dis. 2016; 1.


69. Heidari A. Polymorphism in Nano–Sized Graphene Ligand-Induced Transformation of Au38–xAgxCu(xSPh–Bu)x24 to Au36–xAgxCu(xSPh–Bu)x24 (x =1-12) Nanomolecules for Synthesis of Au144–xAgxCu(xSR)x860, (SC4)x860, (SC6)x1260, (PET)x60, (p-MBA)x60, (F)x60, (Cl)x60, (Br)x60, (I)x60, (Cu)x60, (U)sx60 and (SC6H13)180 Nano Clusters as Anti-Cancer Nano Drugs’. J Nanomater Mol Nanotechnol. 2017; 6: 3.

70. Heidari A. Biomedical Resource Oncology and Data Mining to Enable Resource Discovery in Medical, Medicinal, Clinical, Pharmaceutical, Chemical and Translational Research and Their Applications in Cancer Research. Int J Biomed Data Min. 2017; 6: 103.


74. Heidari A. Concurrent Diagnosis of Oncology Influence Outcomes in Emergency General Surgery for Colorectal Cancer and Multiple Sclerosis (MS) Treatment Using Magnetic Resonance Imaging (MRI) and Au329(SR)x84, Au329–xAgx(SR)x84, Au144–xAgxCu(xSR)x860, Au68(SR)36, Au30(SR)x16, Au102(SPh)x4, Au36(SPh)x24, Au38(SC2H4Ph)x24, Au215(SAdm)x15, Au38(p-MBA)x24 and Au225(p-MBA)18 Nano Clusters. J Surgery Emerg Med. 2017; 1: 21.


82. Heidari A. Treatment of Breast Cancer Brain Metastases through a Targeted Nanomolecule Drug Delivery System Based on Dopamine Functionalized Multi-Wall Carbon Nanotubes (MW/CNTs) Coated with Nano Graphene Oxide (GO) and Protonated Polyaniline (PANI) in Situ During the Polymerization of Aniline Autogenic Nanoparticles for the Delivery of Anti-Cancer Nano Drugs under Synchrotron Radiation. Br J Res. 2017; 4: 18.


98. Heidari A. Brown C. Combinatorial Therapeutic Approaches to DNA/RNA and Benzylpenicilin (Penicillin G), Fluoxetine Hydrochloride (Prozac and Sarafem), Propofol (Diprivan), Acetylsalicylic Acid (ASA) (Aspirin), Naproxen Sodium (Aleve and Naprosyn) and Dextrometaphamethamine Nanocapsules with Surface Conjugated DNA/RNA to Targeted Nano Drugs for Enhanced Anti-Cancer Efficacy and Targeted Cancer Therapy Using Nano Drugs Delivery Systems. Adv Adv Chem. 2017; 1: 061-069.


107. Heidari A. Overview of the Role of Vitamins in Reducing Negative Effect of Decaptyl (Triptorelin Acetate or Pamoate Salts) on Prostate Cancer Cells and Tissues in Prostate Cancer Treatment Process through Transformation.


113. Heidari A. Vibrational Decihertz (dHz), Centihertz (cHz), Millihertz (mHz), Microhertz (μHz), Nanohertz (nHz), Picohertz (pHz), Femtohertz (fHz), Attohertz (aHz), Zeptohertz (zHz) and Yoctohertz (yHz) Imaging and Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation*, International Journal of Biomedicine. 2017; 7: 335-340.


118. Heidari A. Vibrational Decahertz (daHz), Hectohertz (hHz), Kilohertz (kHz), Megahertz (MHz), Gigahertz (GHz), Terahertz (THz), Petahertz (PHz), Exahertz (EHz), Zetahertz (ZHz) and Yotahertz (YHz) 12 imaging and Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation. Madridge J Anal Sci Instrom. 2017; 2: 41-46.