The Prime Numbers

Let Ni be a natural integer less than or equal to N, then exists the formula as follows:

\[Ni \leq N \]

(1)

In terms of the above formula we can obtain the array as follows:

\((1), (2), (3), (4), (5), \ldots, (N) \).

From the above arrangement we can obtain the formula as follows:

\[Ni(N) = N - \text{Total of integers } Ni \leq N \]

(2)

If Ni can be divided by the prime anyone less than or equal to \(\sqrt{N} \), then sieves out the positive integer Ni; If \(N_p \) can not be divided by all primes less than or equal to \(\sqrt{N} \), then the number \(N_p \) is a prime.

The Sieve Method

Let \(Pi \) be a prime less than or equal to \(\sqrt{N} \), the number of integers \(Ni \) can be divided by the prime \(Pi \) is \(\text{INT} \{ N/Pi \} \), the number of integers \(Ni \) can not be divided by the prime \(Pi \) is:

\[N_p(N, Pi) = N - \text{INT} \{ N/Pi \} = \text{INT} \{ N \times (1-1/Pi) \} \]

(3)

Where the \(\text{INT} \{ \} \) expresses the taking integer operation of formula spread out type in \{ \}.

The New Prime Number Distribution Theorem

Let \(Pi(N) \) be the number of primes less than or equal to \(N \), \(Pi(2 \leq Pi \leq Pm) \) be taken over the primes less than or equal to \(\sqrt{N} \), then exists the formulas as follows:

\[Pi(N) = \text{INT} \{ N \times \prod (1-1/Pi) \} + m - 1 = Li(N) - 0.5 \times Li(N^{0.5}) \pm 0.5 \times Li(N^{0.5}) \]

(4)

\[Li(N^{0.5}) \geq Li(N) - Pi(N) \geq 0 \]

(The Riemann Hypothesis is proved)

\[Pi(N) = R(N) \times K \times (Li(N) - R(N)) \]

, \(1 \geq K \geq -1 \).

\[P(K) = 1.99471140200716338696973029997 \times EXP(-12.5 \times K \times K) \]

Where the \(\text{INT} \{ \} \) expresses the taking integer operation of formula spread out type in \{ \}, the \(Li(N) \) is the logarithmic integral function, the \(R(N) \) is the Riemann Prime Counting Function, the \(P(K) \) is the Normal Distribution \(N(\mu=0, \sigma=0.2) \).

The Normal Distribution Theorem of Prime Numbers

Let \(Pi(N) \) be the number of primes less than or equal to \(N \), for any real number \(N \), the New Prime Number Distribution Theorem can be expressed by the formulas as follows:

\[Pi(N) = R(N) + K \times (Li(N) - R(N)) \]

, \(1 \geq K \geq -1 \).

\[Pi(N) = R(N) \pm (Li(N) - R(N)) \]

, \(Pi(N) = Li(N) - 0.5 \times Li(N^{0.5}) \pm 0.5 \times Li(N^{0.5}) \]

(8)
The Extreme Limit Formulas of New Prime Number Distribution Theorem

Let $P_i(N)$ be the prime-counting function that gives the number of primes less than or equal to N, for any real number N, then prime number theorem can be expressed by the formula as follows:

$$P_i(N) = \text{INT} \{N \times (1 - 1/P_1) \times (1 - 1/P_2) \times \ldots \times (1 - 1/P_m) + m - 1\}$$

Where the $\text{INT} \{ \ldots \}$ expresses the taking integer operation, P_1, P_2, \ldots, P_m are all prime numbers less than or equal to \sqrt{N}, the $\text{Li}(N)$ is the logarithmic integral of formula spread out type in $\{ \ldots \}$.

Distribution Theorem

Citation: Sha YY. Gauss Riemann Shayinyue Prime Number Distribution Theorem. SM J Biometrics Biostat. 2018; 3(3): 1035.