In the current study, we have experimentally and comparatively investigated and compared malignant human cancer cells and tissues before and after irradiating of synchrotron radiation using Thermal Spectroscopy, Photothermal Spectroscopy, Thermal Microspectroscopy, Photothermal Microspectroscopy, Thermal Macrospectroscopy and Photothermal Macrospectroscopy. It is clear that malignant human cancer cells and tissues have gradually transformed to benign human cancer cells and tissues under synchrotron radiation with the passage of time (Figures 1-6) [1-123].

It can be concluded that malignant human cancer cells and tissues have gradually transformed to benign human cancer cells and tissues under synchrotron radiation with the passage of time (Figures 1-6) [1-123].
Figure 2: Photothermal Spectroscopy analysis of malignant human cancer cells and tissues (A) before and (B) after irradiating of synchrotron radiation in transformation process to benign human cancer cells and tissues with the passage of time [1-123].

Figure 3: Thermal Microspectroscopy analysis of malignant human cancer cells and tissues (A) before and (B) after irradiating of synchrotron radiation in transformation process to benign human cancer cells and tissues with the passage of time [1-123].

Figure 4: Photothermal Microspectroscopy analysis of malignant human cancer cells and tissues (A) before and (B) after irradiating of synchrotron radiation in transformation process to benign human cancer cells and tissues with the passage of time [1-123].
Figure 5: Thermal Macrospectroscopy analysis of malignant human cancer cells and tissues (A) before and (B) after irradiating of synchrotron radiation in transformation process to benign human cancer cells and tissues with the passage of time [1-123].

Figure 6: Photothermal Macrospectroscopy analysis of malignant human cancer cells and tissues (A) before and (B) after irradiating of synchrotron radiation in transformation process to benign human cancer cells and tissues with the passage of time [1-123].

References

18. Heidari A. “Measurement of the Amount of Vitamin D2 (Ergocalciferol), Vitamin D3 (Cholecalciferol) and Absorbable Calcium (Ca2+), Iron (II) (Fe2+), Magnesium (Mg2+), Phosphate (PO4–) and Zinc (Zn2+) in Apricot Using High-Performance Liquid Chromatography (HPLC) and Spectroscopic Techniques”. J Biom Biostat. 2016; 7: 292.

19. Heidari A. “Spectroscopy and Quantum Mechanics of the Helium Dimer (He2+), Neon Dimer (Ne2+), Argon Dimer (Ar2+), Krypton Dimer (Kr2+), Xenon Dimer (Xe2+), Radon Dimer(Rn2+) and Ununactium Dimer (Uuo2+) Molecular Cations”. Chem Sci J. 2016; 7: e112.

27. Heidari A. “Discriminate between Antibacterial and Non-Antibacterial Drugs Artificial Neutral Networks of a Multilayer Perceptron (MLP) Type Using a Set of Topological Descriptors”. J Heavy Met Toxicity Dis. 2016; 7: e129.

Heidari A. “Treatment of Breast Cancer Brain Metastases through a Targeted Nanomolecule Drug Delivery System Based on Diamine Functionalized Multi-Wall Carbon Nanotubes (MWONTs) Coated with Nano Graphene Oxide (GO) and Prototened Polyalanine (PANI) in Situ During the Polymerization of Aniline Autogenic Nanoparticles for the Delivery of Anti-Cancer Nano Drugs under Synchrotron Radiation”. Br J Res. 2017; 4: 16.

107. Heidari A. "Overview of the Role of Vitamins in Reducing Negative Effect of Decapeptyl (Triptorelin Acetate or Pamoate Salts) on Prostate Cancer Cells and Tissues in Prostate Cancer Treatment Process through 12Transformation of Malignant Prostate Tumors into Benign Prostate Tumors under Synchrotron Radiation". Open J Anal Bioanal Chem. 2017; 1: 21-26.

113. Heidari A. "Vibrational Decihertz (dhHz), Centihertz (chHz), Millihertz (mHz), Microhertz (\textmu Hz), Nanohertz (nHz), Picohertz (pHz), Femtohertz (fhHz), Attohertz (aHz), Zeptohertz (zhHz) and Yoctohertz (yHz) Imaging and Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation", International Journal of Biomedicine. 2017; 7: 335-340.

118. Heidari A. "Vibrational Decahertz (daHz), Hectohertz (hHz), Kiloheertz (kHz), Megahertz (MHz), Gigahertz (GHz), Terahertz (THz), Petahertz (PHz), Exahertz (EHz), Zettahertz (ZHHz) and Yottahertz (YHz) Imaging and Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation". Madridge J Anal Sci Instrum. 2017; 2: 41-46.

121. Heidari A. "Infrared Photo Dissociation Spectroscopy and Infrared Correlation Table Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation with the Passage of Time". Austin Pharmacol Pharm. 2018; 3: 10-11.
