Introduction

Transvaginal ultrasound is the main reference technique in the evaluation of adnexal masses. When it is performed by expert examiners, subjective impressions are associated with a high sensitivity and specificity in the identification of malignancy, which is extremely useful for surgical approaches [1-3].

However, there are not always expert examiners available for the evaluation of adnexal masses. Therefore, many systems such as simple descriptors [4], mathematical models [5] and linear regression models [6] have been described.

Based on the Breast Imaging Reporting and Data System (BIRADS) classification developed by the American College of Radiology in 1993, that classifies breast lesions effectively according to the level of suspicion for malignancy [7,8], in 2009 Amor et al. suggested adapting this system to gynecologic ultrasound for the evaluation of adnexal masses: Gynecologic Imaging Reporting and Data System (GI-RADS) and based on recognition patterns and criteria recommended by the IOTA group.

Materials and methods

A retrospective observational study was performed on women with adnexal masses who were diagnosed and operated consecutively at the Virgen de la Arrixaca Clinical University Hospital in Murcia between January 2013 and December 2014. All patients underwent transvaginal or transrectal ultrasound. GI-RADS1 was not included (no mass). GI-RADS2 and 3 lesions were classified as benign and GI-RADS4 and 5 as probably malignant.

Results:

387 patients, mean age 43 (13- 88), 246 premenopausal (63.5%) and 142 postmenopausal (36.5%). 387 masses were classified: 3 GI-RADS2 (0.7%), 316 GI-RADS3 (811.7%), 20 GI-RADS4 (5.1%) and 48 GI-RADS5 (12.4%). GI-RADS2, none was malignant. GI-RADS3, 3.1% were malignant. GI-RADS4, 60% were malignant and GI-RADS5, 91.7% were positive for malignancy. Sensitivity 84.9% (95%CI 74.3–91.6%), Specificity 96.3% (95%CI 93.8-97.9%), LR+ 22.7 (CI95% 12.9–39.9), LR- 0.2 (95%CI 0.1-0.3); Odds Ratio 144.2 (95%CI 59.4 – 349.8). Area under the ROC curve 0.90.

Conclusion:

The GI-RADS reporting system has proved to perform well as a diagnostic system and it seems to be useful in everyday clinical practice. However, it would be advisable to check the classification criteria for GI-RADS 3 and 4 in order to achieve greater diagnostic reliability.
The GI-RADS reporting system includes five grades (table 1).

Lesions classified as GI-RADS 1 lesions were not included as most of them were not operated on. GI-RADS 2 and 3 lesions were classified as benign and GI-RADS 4 and 5 lesions were probably malignant (positive on ultrasound).

The gold standard that confirmed them were the histological results provided by the Anatomical Pathology Services, following the criteria of the World Health Organization (WHO) [12], and malignant tumors were staged according to the criteria of the International Federation of Gynecology and Obstetrics (FIGO) [13]. Tumors of borderline histology were classified as malignant tumors.

The statistical data analysis was performed with IBM SPSS Statistics 22.

A descriptive analysis of the lesions was performed together with sensitivity, specificity, Odds Ratio and ROC curve analysis, and the analysis of surgeries and age groups to test if GI-RADS system is applicable as a report method for clinical decision-making in adnexal masses.

Results

A total of 387 patients with adnexal masses were entered into the study. All patients were referred to the HCUVA Ultrasound Unit, the mean age being 43 years (age range between 13 and 88 years), of which 246 were premenopausal (63.5%) and 141 postmenopausal women (36.5%).

The prevalence of malignant tumors was 16.8%, the mean presentation age for malignant lesions being 52.06 years.

Regarding the surgical techniques applied, 44.7% underwent laparotomy and 55.3% a laparoscopy. 9.5% of the malignant adnexal masses were managed laparoscopically.

Of the 387 adnexal masses assessed, 3 (0.7%) were classified as GI-RADS 2, 316 (81.7%) as GI-RADS 3, 20 (5.1%) as GI-RADS 4 and 48 (12.4%) as GI-RADS 5 (Figure 1).

Of the GI-RADS 2, none was malignant.

Of the 316 cases classified as GI-RADS 3, 3.1% were malignant [10] or classified false-negative in our study and represented 2.5% of the whole sample.

Of the GI-RADS 4, 60% were malignant; and of the GI-RADS 5, 91.7% of the cases were positive for malignancy. (table 2).

The overall sensitivity of the technique for diagnosis of malignancy was 84.9% (CI 95% 74.3 – 91.6 %) and specificity was 96.3% (CI 95% 93.6 – 97.9%); LR+ 22.7 (12.9 – 39.9), LR- 0.2 (0.1-0.3); and diagnostic Odds Ratio of 144.2 (59.4 – 349.8).

The ROC curve analysis obtained at the end of the study showed an area under the curve value of 0.90. (Figure 2)

Finally, the results of the histological study showed that endometrioma, being the most common lesion, was found in 24.5% of the total cases. Of the histologically malignant lesions, the most frequent lesion found was the Primary Ovarian Carcinoma. (Table 3).

Discussion

The diagnosis and correct classification of adnexal masses are one of the most important issues in everyday gynecological practice. It seems to be obvious that the ultrasound evaluation of these masses has to be the first diagnostic test to be performed for an accurate classification [1-3].
Ultrasound reports have to show clear and detailed information in order to avoid any misunderstanding [14]. Therefore, multiple systems have been developed to score and classify adnexal masses in order to avoid these errors and standardize diagnostic criteria [15-17]. Inappropriate reporting may cause anxiety in the patient and lead to unnecessary additional tests or surgery [18]. For this reason, Amore et al. suggested using a new reporting system to classify adnexal masses, also known as GI-RADS and based on the internationally accepted BIRADS for classifying breast lesions [9].

In the present study, sensitivity for predicting malignancy was 84.3% and specificity was 96.3%. The lack of higher sensitivity figures reported could be due to the complexity of the masses assessed. This is the reason why 12 false-positive and 10 false-negative cases were reported in our population. However, there may be a risk of selection bias, due to the high prevalence of malignant lesions found (16.8%), especially considering that consecutive sampling was performed on patients referred to the Ultrasound Unit for subjective evaluation by an expert after an inconclusive diagnosis.

Among the false positives, most of them showing patterns mentioned by Alcázar, et al. in an article published in 2012 about specific performance for BIRADS [19], there was a Pelvic Inflammatory Disease (PID) that was originally considered borderline; two ovarian fibromas diagnosed as borderline tumors; two mucinous cystadenomas with important vascularization considered primary carcinomas; and three serous cystadenomas, two hyalinized myomas, an endometrioma and a hydrosalpinx were originally thought to be borderline.

Among the false negatives, an article written by Moszynski, et al. confirms that subjective ultrasound evaluation of adnexal masses has a high specificity [20]. However, among those considered benign tumors, some malignant tumors can still be found especially within the unexpected population, as for example in premenopausal patients [21]. In our sample, 10 false negatives were found as follows: a granulosa cell tumor diagnosed as a tubo-ovarian abscess, a Leydig cell tumor thought to be a fibroma; an endometrioid carcinoma diagnosed as a suspected benign tumor; a primary ovarian carcinoma suspected to be an ovarian torsion; a dysgerminoma diagnosed as a suspected benign tumor; two primary ovarian carcinomas diagnosed as suspected benign tumors; another primary ovarian carcinoma classified as a myoma; and two borderline tumors considered mucinous tumors.

The results achieved in our study confirm previous literature. Thus, in 2009 Amor, et al. published an article in which they described the GI-RADS classification, a prospective study of 187 adnexal masses where the prevalence of malignant tumors was 13.4%, reaching a sensitivity of 92% and a specificity of 97% [9].

Later in 2011, the same team published a new multicentric prospective study of 432 adnexal masses assessed with ultrasound according to the GI-RADS classification, which resulted in a sensitivity of 99.1% and 85.9% [11].

In a recent study performed by Rams, et al. in 2015, 98 adnexal masses were assessed using the GI-RADS reporting system, which revealed the best results with a sensitivity of 100% and a specificity of 89.2%.

In our study, the main difficulty encountered when identifying malignant lesions in order to reduce false negatives may have been due to the uncommon histology of some tumors.

The hospital where the study has been performed (HCUVA), is a tertiary referral center with a specific Gynecology Oncology division (an “Oncology Centre” as it was defined by the IOTA Consortium [22] and specifics units where patients with persistent adnexal masses are followed. This could explain the high prevalence of GI-RADS 3 tumors (84.12%), so this can also be an important factor involved on reduce the clinical significance of the study.

Gynecologic Imaging Reporting and Data System (GI-RADS) is one more of the multiple methods being developing to improve an accurate adnexal masses study and diagnosis. Different studies as the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial is a large population-based randomized trial designed and sponsored by the National Cancer Institute (NCI) in the United States to determine the effects of screening on cancer-related mortality.
and secondary endpoints [23]. PLCO trial has shown us screening difficulties with current techniques [24]. Others like IOTA group studies in Europe give us valuable tools in this field. IOTA group ADNEXT model can be an useful tool for predict if the adnexal mass is a benign or malign one [22] which seems to perform similar to, or even slightly better than, both LR2 (AUC 0.92) and simple rules previous models [25].

Conclusion

GI-RADS reporting system has proved to perform well as a report system and ultrasound evaluation of adnexal masses, and it seems to be useful in everyday clinical practice as well as for clinical decision-making. However, it would be advisable to check the classification criteria for GI-RADS 3 and 4 in order to achieve greater diagnostic reliability.

Data given in our study series enhance previous literature.

References